inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vanadium(V) oxide arsenate(V), VOAsO₄

Safa Ezzine Yahmed, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis-ElManar, 2092 El-Manar, Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 10 January 2011; accepted 1 February 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (V–O) = 0.002 Å; R factor = 0.018; wR factor = 0.057; data-to-parameter ratio = 11.1.

The vanadyl arsenate, VOAsO₄, has been isolated by a solidstate reaction. The structure consists of distorted VO₆ octahedra and AsO₄ tetrahedra sharing corners to build up VAsO₇ layers parallel to *ac* linked by edge-sharing of VO₆ octahedra, forming a three-dimensional framework.

Related literature

For the preparation, see: Ezzine *et al.* (2009). For structural relationships, see: Leclaire *et al.* (2002); Lii *et al.* (1990); Haddad *et al.* (1992); Haddad & Jouini (1994); Borel *et al.* (1997). For properties of related compounds, see: Aranda *et al.* (1992); Daidouh *et al.* (1997); Nguyen & Sleight (1996). For bond-valence data, see: Brown & Altermatt (1985). For related structures with formula $MOXO_4$ (M = V, Nb, Mo, Sb; X = P, S), see: Amos *et al.* (1998); Boghosian *et al.* (1995); Kierkegaard & Longo (1970); Piffard *et al.* (1986); Tachez *et al.* (1981).

Experimental

Crystal data

VOAsO₄ $M_r = 205.86$ Monoclinic, $P2_1/n$ a = 6.3338 (7) Å b = 8.2826 (8) Å c = 6.3599 (7) Å $\beta = 90.19$ (1)° $V = 333.64 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 12.69 \text{ mm}^{-1}$ T = 298 K $0.21 \times 0.11 \times 0.10 \text{ mm}$

Data collection

```
Enraf–Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{min} = 0.201, T_{max} = 0.276
1646 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.057$ S = 1.16724 reflections 724 independent reflections 672 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ 2 standard reflections every 120 min intensity decay: 1.2%

65 parameters $\Delta \rho_{\text{max}} = 0.63 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.72 \text{ e} \text{ Å}^{-3}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2001).

References

- Amos, T. G., Yokochi, A. & Sleight, A. W. (1998). J. Solid State Chem. 141, 303–307.
- Aranda, M. A. G., Attfield, J. P., Bruque, S. & Martinez-Lara, M. (1992). Inorg. Chem. 31, 1045–1049.
- Boghosian, S., Eriksen, K. M., Fehrmann, R. & Nielsen, K. (1995). Acta Chem. Scand. 49, 703–708.
- Borel, M. M., Leclaire, A., Chardon, J., Provost, J., Rebbah, H. & Raveau, B. (1997). J. Solid State Chem. 132, 41–46.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28-34.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Ezzine, S., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i31.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haddad, A. & Jouini, T. (1994). J. Solid State Chem. 112, 218-221.
- Haddad, A., Jouini, T. & Piffard, Y. (1992). Eur. J. Solid State Inorg. Chem. 29, 57–63.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kierkegaard, P. & Longo, J. M. (1970). Acta Chem. Scand. 24, 427-432.
- Leclaire, A., Borel, M. M. & Raveau, B. (2002). J. Solid State Chem. 163, 534–539.
- Lii, K. H., Tsai, H. J. & Wang, S. L. (1990). J. Solid State Chem. 87, 396-401.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Nguyen, P. T. & Sleight, A. W. (1996). J. Solid State Chem. 122, 259-265.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Piffard, Y., Oyetola, S., Verbaere, A. & Tournoux, M. (1986). J. Solid State Chem. 63, 81–85.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tachez, J., Theobald, F. R. & Bordes, E. (1981). J. Solid State Chem. 40, 280-283.

supplementary materials

Acta Cryst. (2011). E67, i21 [doi:10.1107/S1600536811004053]

Vanadium(V) oxide arsenate(V), VOAsO₄

S. Ezzine Yahmed, M. F. Zid and A. Driss

Comment

Le vanadium peut adopter différentes coordinations et divers états d'oxydation. En outre, la jonction des polyèdres VO_n avec des tetraèdres XO₄ (X= P ou As), peut mener à des composés possédant des charpentes anioniques ouvertes mixtes uni, bi ou tridimensionnelles (Leclaire *et al.*, 2002; Lii *et al.*, 1990; Haddad *et al.*, 1994; Borel *et al.*, 1997; Ezzine *et al.*, 2009), pouvant manifester certaines propriétés physiques intéressantes notamment: de conduction ionique (Daidouh *et al.*, 1997), d'échange d'ions (Aranda *et al.*, 1992) ou parfois catalytique (Nguyen & Sleight, 1996). L'unité asymétrique dans la structure renferme un tétraèdre AsO₄ et un octaèdre VO₆ reliés par mise en commun d'un sommet formant l'unité classique VAsO₉ (Fig. 1), présentant une distance courte caractéristique d'un groupement vanadyl (d(V-O)= 1,570 (3) Å). Ces unités se connectent pour établir des chaînes infinies VAsO₈ parallèles respectivement à a et c. L'association de celles-ci, assurée par partage de sommets entre les polyèdres de nature différente conduit à des couches infinies VAsO₇ disposées parallèlement au plan ac (Fig. 2). La jonction de ces dernières est réalisée par partage d'arêtes ente octaèdres VO₆ appartenant à deux couches adjacentes pour conduire à une structure tridimentionnelle (Fig. 3).

La formule empirique de Brown (Brown & Altermatt, 1985) a été utilisée pour le calcul des différentes valences des liaisons qui vérifient bien les valeurs des charges des ions V(5,036) et As(4,936) dans cet oxyde.

La comparaison de la structure de VOAsO₄ avec des travaux antérieurs de formulation analogue MOXO₄ (avec M= V, Nb, Mo ou Sb; X= P ou S) révèle la présence des chaînes classiques MXO₈ dans les composés MOPO₄ (M= V, Mo, Nb, Sb) (Amos *et al.*, 1998; Piffard *et al.*, 1986; Tachez *et al.*, 1981; Kierkegaard *et al.*, 1970) et VOSO₄ (Boghosian *et al.*, 1995) analogues à celles rencontrées dans la phase étudiée. La jonction entre ces chaînes, dans VOPO₄, MoOPO₄, NbOPO₄ conduit aux mêmes types de couches MXO₇ rencontrées dans notre oxyde VOAsO₄. Cependant dans les composés VOSO₄ et SbOPO₄ ces chaînes se lient par partage de sommets moyennant les octaèdres MO₆ et établissent des couches infinies MXO₇ (Fig. 4). Ces dernières se connectent entre elles par partage de sommets entre les octaèdres MO₆ dans les phosphates de niobium, vanadium ou molybdène et par ponts mixtes M-O-X dans le sulfate de vanadium et le phosphate d'antimoine. L'association des couches conduit dans chaque cas à une structure tridimensionnelle.

Experimental

Des cristaux de la phase VOAsO₄ ont été obtenus au cours de l'exploration du système Na₂O–V₂O₅–As₂O₅. En effet, un mélange réalisé dans les conditions stoechiométriques (1:2:2) à partir des réactifs solides NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01–775), NH₄VO₃ (Riedel-De Haën) et NaNO₃ (Fluka) est finement broyé et pré-chauffé à 573 K pendant une nuit. La température est ensuite portée à 873 K pendant deux jours. Après refroidissement, l'observation du mélange révèle la présence de deux types de cristaux. La phase majoritaire, sous forme parallélepipédique de couleur verte, s'avère moyennant la diffraction des rayons-*X*, le composé NaVAsO₅ (Haddad *et al.*1992). Un cristal de la phase minoritaire a été donc choisi pour la détermination de sa structure.

Refinement

Le facteur de consistance interne R_{int} calculé pour les facteurs de structure supposés équivalents soit dans les cas orthorhombic ou tetragonal conduit à des valeurs supérieures à 26%. *L*'affinement final est par conséquent mené dans le sysème monoclinic avec une valeur de R_{int} égale à 2,2%. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivements à 0,73 Å de O2 et à 0,93 Å de As.

Figures

Fig. 1. Unité asymétrique dans VOAsO4. Les éllipsoïdes ont été définis avec 50% de probabilité. [codes de symmétrie: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x - 1, y, z; (iii) x - 1, y, z - 1; (iv) -x + 1, -y, -z + 1; (v) x - 1/2, -y + 1/2, z + 1/2].

Fig. 2. Projection d'une couche VAsO₇ selon b montrant la connexion des chaînes infinies VAsO₈.

Fig. 3. Projection de la structure de VOAsO₄ selon a.

Fig. 4. Projection d'une couche VSO7 selon c dans l'oxyde VOSO4.

Vanadium(V) oxide arsenate(V)

Crystal data VOAsO₄ $M_r = 205.86$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.3338 (7) Å

F(000) = 384 $D_x = 4.098 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^\circ$ b = 8.2826 (8) Å c = 6.3599 (7) Å $\beta = 90.19 (1)^{\circ}$ $V = 333.64 (6) \text{ Å}^{3}$ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	672 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
graphite	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$
$\omega/2\theta$ scans	$h = -8 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -1 \rightarrow 10$
$T_{\min} = 0.201, \ T_{\max} = 0.276$	$l = -8 \rightarrow 8$
1646 measured reflections	2 standard reflections every 120 min
724 independent reflections	intensity decay: 1.2%

 $\mu = 12.69 \text{ mm}^{-1}$

T = 298 K

Prism, orange

 $0.21\times0.11\times0.10~mm$

Refinement

Primary atom site location: structure-invariant direct methods		
Secondary atom site location: difference Fourier map		
$w = 1/[\sigma^2(F_o^2) + (0.0302P)^2 + 0.2701P]$ where $P = (F_o^2 + 2F_c^2)/3$		
$(\Delta/\sigma)_{max} < 0.001$		
$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$		
$\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$		
Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$		
Extinction coefficient: 0.0051 (10)		

Special details

х

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

y z $U_{\rm iso}^{*}/U_{\rm eq}$

supplementary materials

V	0.03529 (6)	0.17105 (6)	0.159	35 (6)	0.00436 (16)		
As	0.03636 (4)	0.24811 (3)	0.657	71 (4)	0.00357 (14)		
01	0.0152 (3)	-0.1177 (2)	0.140	8 (3)	0.0055 (4)		
02	0.0313 (3)	0.3600 (3)	0.139	5 (3)	0.0113 (5)		
O3	0.2446 (3)	0.3664 (2)	0.715	8 (3)	0.0073 (4)		
O4	0.3279 (3)	0.1316 (2)	0.108	3 (3)	0.0076 (4)		
05	0.0968 (3)	0.1379 (2)	0.443	8 (3)	0.0071 (4)		
Atomic displac	ement parameters	$(Å^2)$					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
V	0.0029 (2)	0.0063 (3)	0.0039 (3)	-0.00016 (15) -0.00034 (17)	-0.00090 (15)	
As	0.00167 (19)	0.0062 (2)	0.0028 (2)	-0.00011 (8) -0.00033 (12)	0.00060 (8)	
01	0.0066 (9)	0.0064 (9)	0.0035 (8)	-0.0010 (7) -0.0004 (6)	0.0009 (6)	
02	0.0127 (11)	0.0088 (11)	0.0125 (10)	-0.0003 (7) -0.0011 (8)	0.0000 (7)	
O3	0.0028 (8)	0.0095 (10)	0.0095 (8)	-0.0022 (7) -0.0001 (7)	-0.0010 (7)	
O4	0.0023 (8)	0.0109 (10)	0.0094 (8)	-0.0019 (7) -0.0004 (6)	-0.0030 (7)	
O5	0.0074 (9)	0.0110 (9)	0.0030 (8)	0.0004 (7)	-0.0017 (7)	-0.0006 (7)	
Geometric part	ameters (Å, °)						
V—02		1.570 (3)		V01		2.398 (2)	
V—05		1.869 (2)	As—O3		1.6	1.683 (2)	
V—O3 ⁱ		1.903 (2)	As—O4 ⁱⁱⁱ		1.6	1.683 (2)	
V—04		1.911 (2)	As—O5		1.6	1.683 (2)	
V—01 ⁱⁱ		1.985 (2)	As—O1 ^{iv}		1.7	1.708 (2)	
02—V—05		103.14 (9)	O5—V—O1		84	84.95 (7)	
02—V—03 ⁱ		99.33 (9)	O3 ⁱ —V—O1		78	78.20 (7)	
05—V—03 ⁱ		89.55 (8)	04—V—01		82	82.66 (7)	
02—V—04		99.93 (9)	01 ⁱⁱ —V—01		73	73.88 (8)	
05—V—04		86.58 (8)	O3—As—O4 ⁱⁱⁱ		10	108.07 (10)	
03 ⁱ —V—04		160.74 (9)	O3—As—O5		10	108.23 (9)	
02—V—01 ⁱⁱ		98.17 (9)	O4 ⁱⁱⁱ —As—O5		11	110.52 (9)	
05—V—01 ⁱⁱ		158.54 (9)	O3—As—O1 ^{iv}		11	110.81 (9)	
O3 ⁱ —V—O1 ⁱⁱ		89.55 (8)	O4 ⁱⁱⁱ —As—O1 ^{iv}		11	111.25 (9)	

O5—As—O1^{iv}

107.93 (9)

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x, -y, -z; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x, -y, -z+1.

87.24 (7)

171.60 (8)

04—V—01ⁱⁱ

02—V—01

Fig. 3

